skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sheth, Amit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Rare event prediction involves identifying and forecasting events with a low probability using machine learning (ML) and data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare events, it requires using specialized methods within each step of the ML pipeline, that is, from data processing to algorithms to evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0, and is an active research area in statistical and ML. This article comprehensively reviews the current approaches for rare event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches. Specifically, we consider 73 datasets from different modalities (i.e., numerical, image, text, and audio), four major categories of data processing, five major algorithmic groupings, and two broader evaluation approaches. This article aims to identify gaps in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions, which can help guide practitioners and researchers. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. Free, publicly-accessible full text available November 1, 2025
  6. AAAI (Ed.)
    Researchers have found that fake news spreads much times faster than real news. This is a major problem, especially in today's world where social media is the key source of news for many among the younger population. Fact verification, thus, becomes an important task and many media sites contribute to the cause. Manual fact verification is a tedious task, given the volume of fake news online. The Factify5WQA shared task aims to increase research towards automated fake news detection by providing a dataset with an aspect-based question answering based fact verification method. Each claim and its supporting document is associated with 5W questions that help compare the two information sources. The objective performance measure in the task is done by comparing answers using BLEU score to measure the accuracy of the answers, followed by an accuracy measure of the classification. The task had submissions using custom training setup and pre-trained language-models among others. The best performing team posted an accuracy of 69.56%, which is a near 35% improvement over the baseline. 
    more » « less
  7. Despite their extensive application in language understanding tasks, large language models (LLMs) still encounter challenges including hallucinations - occasional fabrication of information - and alignment issues - lack of associations with human-curated world models (e.g., intuitive physics or common-sense knowledge). Moreover, the black-box nature of LLMs presents significant obstacles in training them effectively to achieve desired behaviors. In particular, modifying the concept embedding spaces of LLMs can be highly intractable. This process involves analyzing the implicit impact of such adjustments on the myriad parameters within LLMs and the resulting inductive biases. We propose a novel architecture that wraps powerful function approximation architectures within an outer, interpretable read-out layer. This read-out layer can be scrutinized to explicitly observe the effects of concept modeling during the training of the LLM. Our method stands in contrast with gradient-based implicit mechanisms, which depend solely on adjustments to the LLM parameters and thus evade scrutiny. By conducting extensive experiments across both generative and discriminative language modeling tasks, we evaluate the capabilities of our proposed architecture relative to state-of-the-art LLMs of similar sizes. Additionally, we offer a qualitative examination of the interpretable read-out layer and visualize the concepts it captures. The results demonstrate the potential of our approach for effectively controlling LLM hallucinations and enhancing the alignment with human expectations. 
    more » « less
  8. Large Language Models have excelled at encoding and leveraging language patterns in large text-based corpora for various tasks, including spatiotemporal event-based question answering (QA). However, due to encoding a text-based projection of the world, they have also been shown to lack a full bodied understanding of such events, e.g., a sense of intuitive physics, and cause-and-effect relationships among events. In this work, we propose using causal event graphs (CEGs) to enhance language understanding of spatiotemporal events in language models, using a novel approach that also provides proofs for the model’s capture of the CEGs. A CEG consists of events denoted by nodes, and edges that denote cause and effect relationships among the events. We perform experimentation and evaluation of our approach for benchmark spatiotemporal QA tasks and show effective performance, both quantitative and qualitative, over state-of-the-art baseline methods. 
    more » « less